Stereocontrol with phosphine oxides: synthesis of optically active cyclopropyl ketones

Adam Nelson ${ }^{* a, b}$ and Stuart Warren ${ }^{a}$
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW
${ }^{b}$ School of Chemistry, University of Leeds, Leeds, UK LS2 9JT

Received (in Cambridge, UK) 9th September 1999, Accepted 30th September 1999

Treatment of β-keto γ^{\prime}-hydroxy phosphine oxides, or silylated hemiacetal derivatives of these compounds, with potassium tert-butoxide in tert-butyl alcohol leads to the formation of cyclopropyl ketones. The synthesis of optically active 1,2 -di- and $1,2,3$-trisubstituted cyclopropyl ketones is described. The reaction is kinetically controlled and the ring-closure is generally stereospecific. A model is described to explain the stereochemical course of the reaction.

Introduction

Cyclopropanes are an interesting structural feature of many biologically active molecules. ${ }^{1}$ For example, cyclopropyl nucleoside analogues ${ }^{2}$ like $\mathbf{1}$ have potential antiviral activity, and

cyclopropyl amide $\mathbf{2}$ is an NMDA (N-methyl D-aspartic acid) receptor agonist. ${ }^{3}$ Conformationally restricted cyclopropyl amino acids ${ }^{4}$ have valuable properties when incorporated into peptides, and have been the subject of a recent review. ${ }^{5}$

Optically active di- and trisubstituted cyclopropyl esters \dagger are most usually synthesised by the metal-catalysed addition of carbene equivalents to alkenes in the presence of chiral ligands, ${ }^{7}$ but good enantioselectivities are usually accompanied by poor diastereoselectivities ${ }^{8}$ unless very bulky diazoacetates (e.g. 3 and 4) are used. ${ }^{9}$ Other workers ${ }^{10}$ have circumvented these problems by studying certain intramolecular cyclopropanations which generally give exo products (such as $\mathbf{5}$). Asymmetric versions of the Simmons-Smith cyclopropanation reaction (using
\dagger For use of cyclopropyl esters as intermediates in natural product synthesis, see ref. 6 .
chiral auxiliaries and chiral reagents) have been developed ${ }^{11}$ and several of these methods have been exploited in work ${ }^{12}$ leading to the total synthesis ${ }^{13}$ of FR-900848 (6). ${ }^{14}$

Homochiral nucleophiles have been used as chiral auxiliaries in the synthesis of cyclopropanes. In 1971, Johnson added the anion of sulfoximine 7 to chalcone and obtained an 84% yield of cyclopropyl ketone $\mathbf{1 0 b}$ with " 49% optical purity" and complete diastereoselectivity (Scheme 1). ${ }^{15}$ More recently,

Scheme 1
Hanessian has synthesised a wide variety of tri- and tetrasubstituted cyclopropyl carbonyl compounds (e.g. 12) using the anion of chiral chloroallyl phosphonamide 8 (Scheme 2). ${ }^{16}$

Scheme 2
Previously, we discovered that treatment of hydroxyketones 13 with potassium tert-butoxide in tert-butyl alcohol initiated a remarkable cascade of events leading to the formation of cyclopropyl ketones $16 .{ }^{17}$ We believe that rearrangement of the hydroxyketones 13 by phosphinoyl transfer was followed by ring-closure of the enolates 15 to give cyclopropyl ketones 16 (Scheme 3). The reaction was successful with a variety of substituents and the yields and stereoselectivities observed were generally excellent. Others have observed similar reactions with diphenylphosphinoyl enamines ${ }^{18}$ and other phosphorusstabilised anions ${ }^{19}$ and ylides. ${ }^{20}$

The silyl ethers ${ }^{21} \mathbf{1 7}$ are protected versions of the hydroxyketones 13. In this paper we describe the synthesis of optically active cyclopropyl ketones (such as 16) from the silyl ethers 17. The stereochemical course of the reaction is discussed in detail.

Scheme 3

Synthesis of the starting materials

The optically active epoxide $\mathbf{2 0}$ was synthesised using methodology introduced by Sharpless (Scheme 4). Dihydroxylation ${ }^{22}$ of the alkene 18 with AD-mix α (in the presence of methanesulfonamide) gave the diol 19 in 97% yield and 84% ee, which

Scheme 4
was converted into the epoxide $20{ }^{23}$ The epoxide $\mathbf{2 0}$ was opened with the lithium derivative of methyldiphenylphosphine oxide; the reaction was rather sluggish and gave the diphenylphosphinoyl alcohol 21 in only 39% yield after refluxing for 3 days in THF (Scheme 5). The diphenylphosphinoyl alcohols ${ }^{24} 21$ and 24 were converted into the benzoate 22 and the acetates 23 and 25 using standard methods.

The homoallylic phosphine oxide $\mathbf{2 6}$, synthesised by allylation of methyldiphenylphosphine oxide, was converted into the diphenylphosphinoyl diol 27 by asymmetric dihydroxylation (Scheme 6) \ddagger The low enantiomeric excess (41% ee) of 27 compared with that of the diol ${ }^{25} 31(>95 \%$ ee) reflects the fact that $\mathbf{2 6}$ lacks an alkene substituent which can fit neatly into the

Scheme 6
\ddagger The dimeric ligand DHQD_{2}-PYR has been recommended for the asymmetric dihydroxylation of terminal alkenes (ref. 22).

chiral pocket formed by the DHQD_{2}-PYR ligand. ${ }^{26}$ The primary alcohol of $\mathbf{2 7}$ was protected as a TBDPS ether $(\rightarrow \mathbf{2 8})$ and the remaining alcohol was acylated under standard conditions.

Synthesis of optically active disubstituted cyclopropyl ketones

Treatment of silyl ethers 17 with tert-butoxide in tert-butyl alcohol triggered the formation of the cyclopropyl ketones $\mathbf{1 0}$ in good yield (Scheme 7). ${ }^{21, \S}$ We propose that desilylation and

Scheme 7

ring-opening $(\mathbf{1 7} \boldsymbol{\rightarrow} \mathbf{3 2})$ is followed by the sequence of events outlined earlier: alkoxy ketones $\mathbf{3 2}$ rearrange (by transfer of the phosphorus acyl group from carbon to oxygen) to enolates 33 which cyclise to give the optically active cyclopropyl ketones $\mathbf{1 0}$ in good yield.

The study was extended to the intramolecular acylation reactions of diphenylphosphinoyl acetates $\mathbf{2 5}$, molecules which can potentially enolise (Scheme 8). The acetates $\mathbf{2 5}$ were treated

with two equivalents of LDA at $-78^{\circ} \mathrm{C}$. The chlorotrimethylsilane trap was omitted because we did not want to isolate either silyl enol ethers or acyl transfer products (such as 17). The crude reaction mixtures were treated with potassium tertbutoxide in tert-butyl alcohol and the cyclopropyl ketones 34 were isolated. We have previously synthesised racemic enolisable cyclopropyl ketones in a similar way. ${ }^{17}$
§ The cyclopropyl ketone trans-10b epimerised to a 67:33 mixture of trans- and cis-10b on standing in CDCl_{3} for three weeks.

Table 1 Attempted epimerisation of the cyclopropyl ketone trans-10b

Entry	Conditions	Product 10b ratio trans:cis
1	p-TsOH, CHCl ${ }_{3}$	$54: 46$ 2
${ }^{\mathrm{t}} \mathrm{BuOK}(10$ eq. $),{ }^{\mathrm{t}} \mathrm{BuOH}$	$>98: 2$	

Fig. 1

Probing the stereochemical course of the formation of cyclopropyl ketones

At this stage of the investigation, an important question remained unanswered: was the formation of cyclopropyl ketones under thermodynamic or kinetic control? Scheme 9 and

Scheme 9
Table 1 describe some experiments which were designed to probe this question. We synthesised a diastereomerically pure sample of racemic $\mathbf{1 0 b}$ using a method reported by Corey. ${ }^{27}$ Cyclopropyl ketone 10b was then subjected to conditions which might reasonably have led to its epimerisation. $\|$ After stirring for 2 weeks with one equivalent of toluene- p-sulfonic acid, 10b was isolated as an equilibrium (54:46) mixture of trans and cis isomers. In contrast, 10b was recovered unchanged after stirring for 6 hours at $50^{\circ} \mathrm{C}$ with ten equivalents of potassium tertbutoxide, conditions which were considerably harsher than those used to synthesise optically active 10b from 17b. Taken together, these results indicate that the cyclisations $\mathbf{1 7} \rightarrow \mathbf{1 0}$ must be kinetically controlled; under the conditions of the cyclisation, enolisation of $\mathbf{1 0 b}$ is clearly not possible. The cyclisations of enolates $\mathbf{3 3}$ are stereoselective because the two substituents prefer to be trans on the forming three-membered ring (Fig. 1). Favourable intramolecular displacement reactions of enolates which lead to the formation of cyclopropyl ketones are well known to proceed with high levels of diastereoselectivity. ${ }^{16,29}$

The stereospecificity of the formation of the cyclopropyl ketones was studied in two different ways. The optically active benzoate 29 was derived from the diol 27 which had 41% ee. Intramolecular acylation of the diphenylphosphinoyl benzoate 29 was followed by conversion into the cyclopropyl ketone 36 (Scheme 10). The silyl ether 36 was converted into the alcohol 37 whose enantiomeric excess was determined to be 43% ee by Mosher's method. ${ }^{30}$ Within the limits of experimental error, the

- The epimerisation of similar cyclopropyl ketones has previously been studied (ref. 28).

37
Scheme 10

38
enantiomeric excess of the cyclopropyl ketone $\mathbf{3 7}$ was the same as its precursor (27), implying that the cyclisation $\mathbf{3 8} \boldsymbol{\rightarrow 3 6}$ proceeded with strict inversion of configuration.
In a similar manner, the diphenylphosphinoyl benzoate 22 was transformed into the corresponding cyclopropyl ketone (Scheme 11). The product of the reaction was certainly the

Scheme 11

diastereoisomer 39; this is the only chiral diastereoisomer (an $[\alpha]_{D}^{20}$ of -37.6 was measured) and the only diastereoisomer with diastereotopic methyl groups. During the course of the cyclisation, the issue of stereoselectivity does not arise because no new stereogenic centres are formed.|| The cyclisation of the enolate $\mathbf{4 0}$ is therefore a particularly interesting test of stereospecificity since the isolation of more than one diastereoisomer would certainly mean that the intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction of $\mathbf{4 0}$ did not proceed with strict inversion of configuration.
$\|$ The carbon marked with an asterisk in 39 is, according to Mislow, ${ }^{31}$ chirotopic (it is in a chiral environment) but not stereogenic.

40

41

We only isolated one diastereoisomer. The cyclisation was stereospecific.
The benzoate $\mathbf{2 2}$ was synthesised from the reagents in the box (Scheme 11). The geometry of the alkene $\mathbf{1 8}$ is retained in the cyclopropyl ketone 39 (the propyl groups are trans on the cyclopropyl ring) because there are four inversions in the reaction sequence: two during the synthesis of the epoxide 20 (Scheme 4), ${ }^{23}$ another when the epoxide is opened ($\mathbf{2 0} \rightarrow \mathbf{2 1}$, Scheme 5) and a fourth when the cyclopropane ring is formed. One stereogenic centre is inverted three times (stereochemically equivalent to one inversion) and the other just once. The enantiomeric excess, introduced by Sharpless AD reaction, remains because there are no achiral intermediates. Moreover, the combination of methyldiphenylphosphine oxide and benzoyl chloride is an interesting alternative to the diazoketone $\mathbf{4 1}$.

Synthesis of trisubstituted cyclopropyl ketones

Our method is particularly well suited to the synthesis of optically active cyclopropyl ketones with a chiral centre at each corner of the three-membered ring; treatment of the silyl ether ${ }^{21}$ 42 with potassium tert-butoxide gave cyclopropyl ketone 44 as a $94: 6$ mixture of diastereomers in 84% yield (Scheme 12). This is

a result of the highly stereoselective cyclisation of enolate $\mathbf{4 3}$ in which both alkyl groups are trans to the forming phenyl ketone (Fig. 2). This favourable cyclisation is not available to 46, and therefore the reaction of silyl ether $\mathbf{4 5}$ was much less selective: a

Fig. 2
62:27: 11 mixture of cyclopropyl ketones $\mathbf{4 7}, \mathbf{4 8}$ and ent-44 was obtained in a relatively poor 55% yield. In this case, we believe that the loss of stereospecificity stems from a competing $\mathrm{S}_{\mathrm{N}} 1$ mechanism. Other reactions suffer loss of stereospecificity when cyclisation is unfavourable, ${ }^{32}$ some of these results may be explained by neighbouring group participation which is competitive with cyclisation. The synthesis of cyclopropyl ketone 44 is particularly interesting because the formation of each stereogenic centre is controlled by a different factor: centre (a) is controlled by the inversion of a displacement reaction $(\mathbf{4 3} \rightarrow \mathbf{4 4})$, centre (b) is already present in the silyl ether 42 and centre (c) is determined by which face of the enolate reacts.

Summary

β-Keto γ^{\prime}-hydroxy phosphine oxides $\mathbf{1 3}$, and related silylated derivatives 17,42 and 45 , can be transformed into cyclopropyl ketones by treatment with potassium tert-butoxide in tert-butyl alcohol. The stereochemical course of this transformation has been determined in detail and the method has been applied to the synthesis of optically active 1,2-di- and 1,2,3-trisubstituted cyclopropyl ketones. Optically active cyclopropyl carbonyl compounds have also been synthesised using asymmetric metalcatalysed cyclopropanations with chiral ligands ${ }^{7,8,10,11}$ and using a phosphonamide chiral auxiliary. ${ }^{16}$ Our reaction sequence combines the best features of these two approaches: a catalytic asymmetric method, the Sharpless AD reaction, was used to induce asymmetry and the formation of the cyclopropane ring was highly diastereoselective because the ring-closure involved anionic chemistry. ${ }^{16,29}$

Experimental

General methods have been described previously. ${ }^{21 b}$

(4R,5R)-Octane-4,5-diol 19

By the method described by Sharpless, ${ }^{22}(E)$-oct-4-ene (5.56 $\left.\mathrm{cm}^{3}, 35.7 \mathrm{mmol}\right)$, AD-mix $\alpha(50 \mathrm{~g})$ and methanesulfonamide $(3.39 \mathrm{~g}, 35.7 \mathrm{mmol})$ gave a crude product after mechanical stirring for 16 h . Flash chromatography, eluting with $1: 1$ hexaneether, gave the $\operatorname{diol}^{33} 19(5.02 \mathrm{~g}, 97 \%)$ as a liquid, $[a]_{\mathrm{D}}^{20}-23.9$ (c 1.34 in CHCl_{3}) (lit. ${ }^{33}+32.2$, c 2.3 in EtOH) (Found: M^{+}, 146.1308. $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $M, 146.1307$); $v_{\max } / \mathrm{cm}^{-1}$ (neat) 3362 $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.34(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.08(2 \mathrm{H}$, $\mathrm{m}, \mathrm{OH}), 1.5-1.3(8 \mathrm{H}, \mathrm{m})$ and $0.89(6 \mathrm{H}, \mathrm{t}, J 7.1,2 \mathrm{Me}) ; \delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 74.2^{+}(\mathrm{CHOH}), 35.6^{-}, 18.8^{-}$and $14.0^{+}(\mathrm{Me}) ;$ $m / z 146.1\left(10 \%, \mathrm{M}^{+}\right), 103.1\left(60, \mathrm{M}^{+}-\mathrm{Pr}\right)$ and 73.1 (100 , CHOHPr). Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the Mosher's diesters of this material showed it to have 84% ee.

(4R,5R)-4,5-Epoxyoctane 20

By the method described by Sharpless, ${ }^{23}$ trimethyl orthoacetate $\left(4.20 \mathrm{~cm}^{3}, 32.9 \mathrm{mmol}\right)$, $(4 R, 5 R)$-octane-4,5-diol 19 ($4.20 \mathrm{~g}, 28.7$ mmol), pyridinium toluene- p-sulfonate ($71 \mathrm{mg}, 0.29 \mathrm{mmol}$), acetyl bromide $\left(2.47 \mathrm{~cm}^{3}, 33.3 \mathrm{mmol}\right)$ and potassium carbonate $(6.76 \mathrm{~g}, 48.7 \mathrm{mmol})$ gave a crude product which was washed with water $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ to give the epoxide ${ }^{34} 20(3.38 \mathrm{~g}, 92 \%)$ as a liquid. $[\alpha]_{\mathrm{D}}^{20}-24.9$ (c 1.70 in ether; 84% ee) (Found: MH^{+}, 129.1277. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$ requires $\left.\mathrm{MH}, 129.1279\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ no characteristic peaks; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.65(2 \mathrm{H}, \mathrm{t}$, $J 4.7, \mathrm{CHO}), 1.6-1.4(8 \mathrm{H}, \mathrm{m})$ and $0.95(6 \mathrm{H}, \mathrm{t}, J 6.9,2 \mathrm{Me})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 58.7^{+}(\mathrm{CHO}), 34.2^{-}, 19.3^{-}$and $13.9^{+}(\mathrm{Me}) ;$ $m / z 129.1\left(10 \%, \mathrm{MH}^{+}\right)$.

(2S,3R)-1-Diphenylphosphinoyl-2-propylhexan-3-ol 21

n-Butyllithium ($15 \mathrm{~cm}^{3}$ of a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexanes, 24.0 mmol) was added dropwise to methyldiphenylphosphine oxide ($4.21 \mathrm{~g}, 19.5 \mathrm{mmol}$) in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After $15 \mathrm{~min},(4 R, 5 R)-4,5$-epoxyoctane $20(2.5 \mathrm{~g}$, 19.5 mmol) was added dropwise, and the reaction was stirred for a further 4 h at $20^{\circ} \mathrm{C}$, refluxed for 3 days, quenched with saturated ammonium chloride solution $\left(100 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to give the alcohol 21 ($2.66 \mathrm{~g}, 39 \%$) as an oil, $R_{\mathrm{f}} 0.50$ (EtOAc); $[a]_{\mathrm{D}}^{20}+8.3$ (c 1.55 in $\mathrm{CHCl}_{3} ; 84 \%$ ee) (Found: M^{+}, 344.1913. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $M, 344.1905$); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3325(\mathrm{br}, \mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and 1160 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.7(4 \mathrm{H}, \mathrm{m}), 7.55-7.4(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{OH}), 3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, $2.41\left(1 \mathrm{H}, \mathrm{dt}, J 9.9\right.$ and $\left.15.3, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.21(1 \mathrm{H}$, ddd, J 3.3, 9.1 and $\left.{ }^{2} J_{\mathrm{PH}} 15.4, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.95(1 \mathrm{H}, \mathrm{m}), 1.54-1.1$ $(8 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{Me})$ and $0.76(3 \mathrm{H}, \mathrm{t}, J 7.2$, Me); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128.5\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 73.0^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}\right.$ $2.4, \mathrm{CHOH}), 39.9^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 3.7, \mathrm{PCH}_{2} \mathrm{CH}\right), 36-34(\mathrm{~m}), 30.3^{-}$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 69.4, \mathrm{PCH}_{2}\right), 21-19(\mathrm{~m}), 14.2^{+}(\mathrm{Me})$ and $14.0^{+}(\mathrm{Me}) ;$ $m / z 344.1\left(1 \%, \mathrm{M}^{+}\right), 301.1\left(75, \mathrm{M}^{+}-\operatorname{Pr}\right)$ and 202.1 (100, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$.

4-Diphenylphosphinoylbut-1-ene 26

By the same general method, n-butyllithium $\left(47.0 \mathrm{~cm}^{3}\right.$ of a 1.3 $\mathrm{mol} \mathrm{dm}^{-3}$ solution in hexane, 61.1 mmol), methyldiphenylphosphine oxide $(12.0 \mathrm{~g}, 55.6 \mathrm{mmol})$ and allyl bromide $\left(5.4 \mathrm{~cm}^{3}\right.$, 61.1 mmol) with lithiation at $-78^{\circ} \mathrm{C}$ and stirring for 2 h gave a crude product which was purified by flash chromatography, eluting with 2% methanol in EtOAc, gave the homoallylic phosphine oxide 26 ($487 \mathrm{mg}, 63 \%, 85: 15$ mixture of mono and bis allylated products) as an oil; $R_{\mathrm{f}} 0.30$ (EtOAc) (Found: M^{+}, 256.1017. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{OP}$ requires $\left.M, 256.1017\right) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ $1640(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.73-7.65(4 \mathrm{H}, \mathrm{m}), 7.5-7.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.76$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.97\left(1 \mathrm{H}, \mathrm{dd}, J 1.0\right.$ and $\left.16.9, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $4.92\left(1 \mathrm{H}\right.$, dd, $J 1.0$ and $\left.10.1, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $2.62-2.38(4 \mathrm{H}$, $\mathrm{m}) ; ~ \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.4^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 15.7, \mathrm{CH}=\mathrm{CH}_{2}\right), 133-$ $128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 115.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 29.0^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 70.6, \mathrm{PCH}_{2}\right)$ and $25.5^{-}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 2.5\right) ; m / z 256.1\left(70 \%, \mathrm{M}^{+}\right), 202.1$ (100, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201.0\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

(2R)-4-Diphenylphosphinoylbutane-1,2-diol 27

By the method previously described, ${ }^{25}$ 4-diphenylphosphinoyl-but-1-ene 26 ($6.83 \mathrm{~g}, 26.7 \mathrm{mmol}, 85: 15$ mono: di allylated material), potassium carbonate ($11.1 \mathrm{~g}, 80.4 \mathrm{mmol}$), potassium ferricyanide ($26.3 \mathrm{~g}, 80.0 \mathrm{mmol}$), osmium trichloride $(200 \mathrm{mg}$, $0.67 \mathrm{mmol})$ and DHQD_{2}-PYR ($941 \mathrm{mg}, 1.06 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$) gave a crude product after stirring for 1 day. Flash chromatography, eluting with 20% methanol in EtOAc, gave the vicinal diol 27 (3.84 g , 58% of possible yield) as an oil, $R_{\mathrm{f}} 0.44$ (30% methanol in EtOAc); $[\alpha]_{\mathrm{D}}^{20}-0.7$ (c 2.89 in CHCl_{3}); (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 272.0963 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$, 272.1071); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3348(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.7-7.55(4 \mathrm{H}, \mathrm{m}), 7.5-$ $7.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.94(1 \mathrm{H}, \mathrm{d}, J 3.9, \mathrm{CHOH}), 4.66(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}^{-}}\right.$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $2.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.65(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 133-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 72.0^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 12.5, \mathrm{CHOH}\right)$, $66.3^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 25.6^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 72.1, \mathrm{PCH}_{2}\right)$ and $25.2^{-}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}}\right.$ 2.9); m/z $272.1\left(5 \%, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 259.1\left(80, \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}\right)$ and 202.1 (100, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$. Integration of the $235 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectrum of the Mosher's ester of this material showed it to have 41% ee.

(2R)-1-(tert-Butyldiphenylsilyloxy)-4-diphenylphosphinoyl-butan-2-ol 28

A solution of (2R)-4-diphenylphosphinoylbutane-1,2-diol 27 $(2.12 \mathrm{~g}, 7.3 \mathrm{mmol})$, imidazole ($1.73 \mathrm{~g}, 25.8 \mathrm{mmol}$) and tertbutylchlorodiphenylsilane ($2.11 \mathrm{~cm}^{3}, 8.0 \mathrm{mmol}$) in DMF (15 cm^{3}) was stirred overnight, quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted into dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude product. Flash chromatography, eluting with 5% methanol in EtOAc, gave the silyl ether 28 $(1.82 \mathrm{~g}, 47 \%)$ as an oil, $R_{\mathrm{f}} 0.32$ (EtOAc); $[a]_{\mathrm{D}}^{20}+2.1$ (c 1.58 in $\mathrm{CHCl}_{3} ; 41 \%$ ee) (Found: $\mathrm{M}^{+}-\mathrm{Bu}, 471.1544 . \mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{PSi}$ requires $M-\mathrm{Bu}, 471.1545)$; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1590(\mathrm{Ph})$ and 1437 (P - Ph); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.3\left(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $2 \times \mathrm{Ph}), 3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.57(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $\left.{ }^{2} J_{\mathrm{HH}} 10.2, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.54\left(1 \mathrm{H}\right.$, dd, $J 6.3$ and ${ }^{2} J_{\mathrm{HH}} 10.2$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 3.42(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{OH}), 2.49(1 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}$, $\mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{m}), 1.65(1 \mathrm{H}, \mathrm{m})$ and $0.99\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}(63$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $135.7^{+}, 133-127.5\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 71.8^{+}(\mathrm{d}$, $\left.{ }^{3} J_{\mathrm{PC}} 11.0, \mathrm{CHOH}\right), 67.3^{-}\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 26.9^{+}$($\left.{ }^{(} \mathrm{Bu}\right), 26.1^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}\right.$ $\left.72, \mathrm{PCH}_{2}\right), 25.4^{-}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 3.5\right)$ and $19.2^{-}\left({ }^{(} \mathrm{Bu}\right) ; m / z 471.2(100 \%$, $\left.\mathrm{M}^{+}-\mathrm{Bu}\right), 393.1$ (65).

(2S,3R)-1-Diphenylphosphinoyl-2-propylhexan-3-yl benzoate 22

Triethylamine ($1.82 \mathrm{~g}, 18.0 \mathrm{mmol}$) and benzoyl chloride $(2.25 \mathrm{~g}, 15.9 \mathrm{mmol})$ were added dropwise to $(2 S, 3 R)$-1-diphenylphosphinoyl-2-propylhexan-3-ol $\quad 21 \quad\left(\begin{array}{llll}1.17 & \mathrm{~g}, & 3.4\end{array}\right.$ mmol) and dimethylaminopyridine ($100 \mathrm{mg}, 0.84 \mathrm{mmol}$) in dry dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature. The reaction was stirred for 3 days, quenched with water, extracted with dichloromethane $\left(3 \times 60 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude product. Flash chromatography, eluting with 2:1 EtOAc-hexane, gave the benzoate ester 22 (880 $\mathrm{mg}, 58 \%$) as an oil, $R_{\mathrm{f}} 0.42$ (EtOAc); $[a]_{\mathrm{D}}^{20}-2.5$ (c 2.25 in $\mathrm{CHCl}_{3} ; 84 \%$ ee) (Found: $\mathrm{M}^{+}, 448.2155 . \mathrm{C}_{28} \mathrm{H}_{33} \mathrm{PO}_{3}$ requires $M, 448.2167$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1712(\mathrm{C}=\mathrm{O}), 1438$ ($\mathrm{P}-\mathrm{Ph}$) and $1176(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}$, dd, $J 1.8$ and 8.0 , ortho- PhCO), $7.75-7.1\left(13 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and remaining Ph), $5.19(1 \mathrm{H}, \mathrm{td}, J 3.2$ and 9.7, $\mathrm{C} H \mathrm{OBz}), 2.57(1 \mathrm{H}$, ddd, $J 2.9,9.3$ and $\left.{ }^{2} J_{\mathrm{HH}} 12.5, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.30(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Pr}), 2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.9-1.2(8 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}$, $\mathrm{t}, J 7.0, \mathrm{Me})$ and $0.90(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 165.9^{-}(\mathrm{C}=\mathrm{O}), 135-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 76.2^{+}(\mathrm{d}$, $\left.{ }^{3} J_{\mathrm{PC}} 10.0, \mathrm{CHOBz}\right), 36.0^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 2.7\right), 33.5^{-}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 2.7\right)$, $31.5^{-}, 30.3^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 71.3, \mathrm{PCH}_{2}\right), 20.1^{-}, 19.2^{-}, 14.1^{+}(\mathrm{Me})$ and $13.9^{+}(\mathrm{Me}) ; m / z 448.2\left(10 \%, \mathrm{M}^{+}\right)$, $202.1\left(60, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 105.0 (100, PhCO).

(2R)-1-(tert-Butyldiphenylsilyloxy)-4-diphenylphosphinoyl-butan-2-yl benzoate 29

By the same general method, (2R)-1-(tert-butyldiphenylsilyl-oxy)-4-diphenylphosphinoylbutan-2-ol $\quad 28 \quad(825 \mathrm{mg}, \quad 1.56$ $\mathrm{mmol})$, dimethylaminopyridine ($64 \mathrm{mg}, 0.53 \mathrm{mmol}$) and benzoyl chloride ($0.32 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}$) gave a crude product after stirring for 16 h . Flash chromatography, eluting with 3:2 EtOAc-hexane, gave the benzoate ester 29 ($821 \mathrm{mg}, 83 \%$) as an oil, $R_{\mathrm{f}} 0.46$ (EtOAc); $[\alpha]_{\mathrm{D}}^{20}+1.6$ ($c 3.18$ in $\mathrm{CHCl}_{3} ; 41 \%$ ee) (Found: $\mathrm{MH}^{+}, 633.2595 . \mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}$ requires $M H, 633.2590$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1714(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.02(2 \mathrm{H}, \mathrm{dd}, J 1.4$ and 8.5 , ortho -Bz$)$, 7.75-7.2 ($23 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and remaining $3 \times \mathrm{Ph}$), $5.29(1 \mathrm{H}$, quin, $J 5.8, \mathrm{CHOBz}), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J 5.1\right.$ and ${ }^{2} J_{\mathrm{HH}} 11.0, \mathrm{C}_{\mathrm{A}^{-}}$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.77\left(1 \mathrm{H}\right.$, dd, $J 4.6$ and $\left.{ }^{2} J_{\mathrm{HH}} 11.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right)$, $2.38(2 \mathrm{H}, \mathrm{m}), 2.11(2 \mathrm{H}, \mathrm{m})$ and $0.93(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}) ; \delta_{\mathrm{C}}(63$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.1^{-}(\mathrm{C}=\mathrm{O}), 135.8^{+}, 133-127.5\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{Ph} \times 3$), $74.8^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 15.4, \mathrm{CHOBz}\right)$, $64.7^{-}\left(\mathrm{CH}_{2} \mathrm{OSi}\right)$, $26.9^{+}\left({ }^{\mathrm{H}} \mathrm{Bu}\right), 25.9^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 72.1, \mathrm{PCH}_{2}\right), 23.2^{-}$and $19.1^{-}\left({ }^{\mathrm{C}} \mathrm{Bu}\right)$; $m / z 633.4(90 \%, \mathrm{MH}+), 575.3(80, \mathrm{M}-\mathrm{Bu})$ and 555.3 (80 , $\mathrm{M}-\mathrm{Ph})$.
(2S,3R)-1-Diphenylphosphinoyl-2-propylhexan-3-yl acetate 23
($2 S, 3 R$)-1-Diphenylphosphinoyl-2-propylhexan-3-ol $21(1.00 \mathrm{~g}$, 2.90 mmol) was dissolved in pyridine ($8 \mathrm{~cm}^{3}$) and acetic anhydride $\left(8 \mathrm{~cm}^{3}\right)$, and the reaction mixture was stirred for 16 h . The reaction was diluted with EtOAc $\left(60 \mathrm{~cm}^{3}\right)$, washed with dilute hydrochloric acid solution $\left(2 \times 60 \mathrm{~cm}^{3}\right)$, saturated aqueous sodium bicarbonate solution ($60 \mathrm{~cm}^{3}$), brine ($60 \mathrm{~cm}^{3}$) and saturated aqueous copper nitrate solution $\left(60 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. Flash chromatography, eluting with $2: 1$ EtOAc-hexane, gave the acetate $23(990 \mathrm{mg}, 88 \%)$ as an oil, R_{f} 0.41 (EtOAc); $[a]_{\mathrm{D}}^{20}-27.4\left(c 1.10\right.$ in $\mathrm{CHCl}_{3} ; 84 \% \mathrm{ee}$) (Found: M^{+}, 386.2006. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{PO}_{3}$ requires $M, 386.2011$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 1727 (C=O), 1438 ($\mathrm{P}-\mathrm{Ph}$) and $1172(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 7.8-7.7 ($4 \mathrm{H}, \mathrm{m}$), $7.55-7.4\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.98(1 \mathrm{H}$, td, $J 3.2$ and $9.3, \mathrm{CHOAc}), 2.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.12(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.7-1.1(9 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{t}$, $J 7.6, \mathrm{Me})$ and $0.82(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $170.5^{-}(\mathrm{C}=\mathrm{O}), 133.5-128.5\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 75.3^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 9.9\right.$, CHOAc), $35.8^{+}, 33.6^{-}$(d, ${ }^{3} J_{\mathrm{PC}} 2.9$), 31.2-, 30.0^{-}(d, ${ }^{1} J_{\mathrm{PC}} 71.4$, $\left.\mathrm{PCH}_{2}\right), 22.1^{+}(\mathrm{Ac}), 20.0^{-}, 19.0^{-}, 14.0^{+}(\mathrm{Me})$ and $13.8^{+}(\mathrm{Me}) ;$ $\mathrm{m} / \mathrm{z} 386.2\left(40 \%, \mathrm{M}^{+}\right)$, $271.1\left(\mathrm{M}^{+}-\mathrm{CHOAcPr}\right)$ and 201.1 (60, $\mathrm{Ph}_{2} \mathrm{POH}$).

3-Diphenylphosphinoyl-1-phenylpropyl acetate 25a

By the same general method, 3-diphenylphosphinoyl-1-phenylpropanol $24 \mathrm{a}(2.97 \mathrm{~g}, 8.83 \mathrm{mmol})$ gave a crude product after 16 h . Flash chromatography, eluting with EtOAc, gave the acetate 25 a ($3.28 \mathrm{~g}, 98 \%$) as needles, $\mathrm{mp} 143-144{ }^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.40$ (EtOAc) (Found: C, 72.8; H, 6.15; $\mathrm{P}, 8.1 ; \mathrm{M}^{+}, 378.1384 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{PO}_{3}$ requires C, 73.0; $\mathrm{H}, 6.15 ; \mathrm{P}$, $8.2 \% ; M, 378.1385) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1737(\mathrm{C}=\mathrm{O}), 1438$ $(\mathrm{P}-\mathrm{Ph})$ and $1179(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.7-7.2(15 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.74(1 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{CHOAc}), 2.4-2.0(4 \mathrm{H}, \mathrm{m})$ and $2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.1^{-}(\mathrm{C}=\mathrm{O}), 139.3^{-}$ (ipso-Ph), 133-126 (m, $\mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 75.6^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 16.3\right.$, $\mathrm{CHOAc}), 28.1^{-}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 1.9\right), 25.5^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 72.0, \mathrm{PCH}_{2}\right)$ and $21.2^{+}(\mathrm{Ac}) ; m / z 378.1\left(45 \%, \mathrm{M}^{+}\right), 335.1\left(100, \mathrm{M}^{+}-\mathrm{Ac}\right)$ and $201.0\left(80, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

(2R)-1-(tert-Butyldiphenylsilyloxy)-4-diphenylphosphinoyl-butan-2-yl acetate 25b

By the same general method, ($2 R$)-1-(tert-butyldiphenylsilyl-oxy)-4-diphenylphosphinoylbutan-2-ol 24b (702 mg, 1.33 mmol) gave a crude product after stirring for 16 h . Flash chromatography, eluting with 3:1 EtOAc-hexane, gave the acetate 25 b ($614 \mathrm{mg}, 66 \%$) as an oil, $R_{\mathrm{f}} 0.46$ (EtOAc); $[a]_{\mathrm{D}}^{20}$ +0.6 ($c 1.86$ in $\mathrm{CHCl}_{3} ; 41 \%$ ee) (Found: $\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}, 513.1562$. $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{PSi}$ requires $\left.M^{+}-{ }^{t} \mathrm{Bu}, 513.1651\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ $1733(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.75-7.3\left(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.2 \times \mathrm{Ph}\right), 5.01(1 \mathrm{H}, \mathrm{qd}$, $J 5.3$ and $6.5, \mathrm{CHOAc}), 3.68\left(1 \mathrm{H}\right.$, dd, $J 5.6$ and ${ }^{2} J_{\mathrm{HH}} 10.8$, $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J 4.7\right.$ and $\left.^{2} J_{\mathrm{HH}} 10.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right)$, $2.25(2 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.93(2 \mathrm{H}, \mathrm{m})$ and $0.98(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.6^{-}(\mathrm{C}=\mathrm{O}), 136-127\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $2 \times \mathrm{Ph}$), $74.1^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 15.3\right.$, CHOAc), $64.5^{-}\left(\mathrm{CH}_{2} \mathrm{OSi}\right)$, $26.7^{+}(\mathrm{CBu}), 25.7^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 72.1, \mathrm{PCH}_{2}\right), 22.9^{-}, 21.1^{+}(\mathrm{Ac})$ and $19.2^{-}\left({ }^{(} \mathrm{Bu}\right)$; $m / z 513.2\left(100 \% \mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$.

($\mathbf{1} \boldsymbol{R}^{*}, \mathbf{2} \boldsymbol{R}^{*}$)-(2-Phenylcyclopropyl)phenylmethanone 10b

By the method of Corey, ${ }^{27}$ sodium hydride (60% dispersion in oil, $212 \mathrm{mg}, 5.3 \mathrm{mmol}$) was added to a solution of trimethylsulfoxonium iodide ($1.14 \mathrm{~g}, 5.2 \mathrm{mmol}$) in DMSO ($6 \mathrm{~cm}^{3}$). After stirring for 10 min , chalcone ($1.0 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added dropwise, the reaction was stirred for 1 h at room temperature and 1 h at $50^{\circ} \mathrm{C}$, quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product, which was purified by flash
chromatography, eluting with $3: 1$ hexane-ether, to give the cyclopropyl ketone 10b as an oil, $R_{\mathrm{f}} 0.53$ (2:1 hexane-ether) (Found: M^{+}, 222.1040. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ requires M, 222.1044); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1662(\mathrm{C}=\mathrm{O}), 1599(\mathrm{Ph})$ and $1579(\mathrm{Ph}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.02(2 \mathrm{H}, \mathrm{dd}, J 1.5$ and 8.5 , ortho-PhCO), 7.58 $(1 \mathrm{H}, \mathrm{dt}, J, 1.1$ and 5.4 , para- PhCO$), 7.49(2 \mathrm{H}, \mathrm{t}, J 5.8$, metaPhCO), 7.33 ($2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{Ph}$), 7.3-7.2 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $2.93(1 \mathrm{H}$, ddd, $J 4.1,5.1$ and 8.2, $\mathrm{Ph}(\mathrm{C}=\mathrm{O}) \mathrm{C} H), 2.72(1 \mathrm{H}$, ddd, $J 4.1,6.7$ and $8.8, \mathrm{PhC} H), 1.95(1 \mathrm{H}$, ddd, $J 4.2,5.2$ and 9.0$)$ and 1.58 (1 H , ddd, J 4.1, 6.6 and 8.0); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 198.5^{-}$ (C=O), 140.5-, $137.8^{-}, 128.9^{+}, 127.8^{+}, 126.2^{+}, 125.8^{+}, 30.0^{+}$, 29.3^{+}and $19.3^{-} ; \mathrm{m} / \mathrm{z} 222.1\left(45 \%, \mathrm{M}^{+}\right), 105.0(100, \mathrm{PhCO})$ and $77(45, \mathrm{Ph})$.

(1S,2S)-(2-Butylcyclopropyl)phenylmethanone 10a

Potassium tert-butoxide ($180 \mathrm{mg}, 1.61 \mathrm{mmol}$) and the silylated hemiacetal ${ }^{21 b}$ 17a (0.53 mmol) were dissolved in tert-butyl alcohol $\left(15 \mathrm{~cm}^{3}\right)$ and stirred for 5 h . The reaction mixture was quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with ether (3×10 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. Flash chromatography, eluting with 4:1 hexane-EtOAc, to give the cyclopropyl ketone 10a (100 mg , $83 \%,>95: 5$ mixture) as an oil, $R_{\mathrm{f}} 0.58$ ($2: 1$ hexane-ether); $[a]_{\mathrm{D}}^{20}$ +5.3 ($c 2.14$ in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: M^{+}, 202.1356. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires $\left.M, 202.1458\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1662(\mathrm{C}=\mathrm{O})$, $1599(\mathrm{Ph})$ and $1579(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01(2 \mathrm{H}, \mathrm{dd}$, $J 1.4$ and 7.2, ortho -Ph$), 7.50(3 \mathrm{H}, \mathrm{m}$, remaining Ph$), 2.42(1 \mathrm{H}$, td, $J 4.4$ and $8.2, \mathrm{Ph}(\mathrm{CO}) \mathrm{C} H), 1.60(1 \mathrm{H}, \mathrm{m}), 1.5-1.3(8 \mathrm{H}, \mathrm{m})$ and $0.90(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.1^{-}$ (C=O), 138.1^{-}(ipso-Ph), 128.4+, 127.9+, 126.2+, 33.1 ${ }^{-}$, 31.3- , $27.2^{+}, 25.1^{+}, 20.4^{-}, 18.9^{-}$and $13.9^{+}(\mathrm{Me}) ; m / z 202.1\left(45 \%, \mathrm{M}^{+}\right)$, $105.0(100, \mathrm{PhCO})$ and $77(45, \mathrm{Ph})$.

(1S,2S)-(2-Phenylcyclopropyl)phenylmethanone 10b

By the same general method, silylated hemiacetal ${ }^{21 b} \mathbf{1 7 b}(60 \mathrm{mg}$, 0.12 mmol) gave a crude product which was purified by flash chromatography, eluting with $1: 1$ hexane-ether to give the cyclopropyl ketone ${ }^{15,27} \mathbf{1 0 b}$ ($16 \mathrm{mg}, 62 \%,>95: 5$ mixture) as an oil. Standing in CDCl_{3} for 3 weeks to give the cyclopropyl ketone $\mathbf{1 0 b}$ ($16 \mathrm{mg}, 62 \%, 67: 33$ mixture) as an oil (Found: M^{+}, 222.1040. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ requires $M, 222.1044$); $R_{\mathrm{f}} 0.61$ ($1: 1$ hexaneether); $[a]_{\mathrm{D}}^{20}+37.8$ (c 0.12 in $\mathrm{CHCl}_{3} ; 86 \%$ ee); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 1662(\mathrm{C}=\mathrm{O}), 1599(\mathrm{Ph})$ and $1579(\mathrm{Ph}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.98\left(2 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and 8.5 , ortho $\left.-\mathrm{Ph}^{\text {major }}\right), 7.90(2 \mathrm{H}$, dd, $J 0.9$ and 8.6 , ortho $-\mathrm{Ph}^{\text {minor }}$), $7.6-7.1(8 \mathrm{H}, \mathrm{m}$, remaining Ph$)$, $3.09\left(1 \mathrm{H}, \mathrm{ddd}, J 5.7,7.3\right.$ and $\left.9.1, \mathrm{Ph}(\mathrm{CO}) \mathrm{C} H^{\text {minor }}\right), 2.90(1 \mathrm{H}$, ddd, $J 4.0,5.2$ and $\left.8.1, \mathrm{Ph}(\mathrm{CO}) \mathrm{C} H^{\text {major }}\right), 2.70(1 \mathrm{H}$, ddd, $J 4.1$, 6.6 and $\left.8.9, \mathrm{PhCH}^{\text {major + minor }}\right), 2.13(1 \mathrm{H}, \mathrm{ddd}, J 5.2,5.8$ and 7.0 , minor), $1.93(1 \mathrm{H}$, ddd, $J 4.1,5.1$ and 9.2 , major), $1.55(1 \mathrm{H}$, ddd, $J 4.1,6.6$ and 8.0 , major), 1.46 (1 H , ddd, $J 4.8,7.6$ and 8.5, minor); $m / z 222.1\left(30 \%, \mathrm{M}^{+}\right), 105.0(100, \mathrm{PhCO})$ and 77 $(55, \mathrm{Ph})$. The trans isomer was spectroscopically identical to that obtained previously.

(1S,2S,3R)-(2-Butyl-3-methylcyclopropyl)phenylmethanone 44

By the same general method, silylated hemiacetal ${ }^{21 b} \mathbf{4 2}(273 \mathrm{mg}$, 0.54 mmol) gave a crude product which was purified by flash chromatography, eluting with $3: 1$ hexane-EtOAc, to give the cyclopropyl ketone 44 ($97 \mathrm{mg}, 84 \%, 96: 4$ mixture) as an oil, R_{f} 0.58 ($2: 1$ hexane-ether); $[a]_{\mathrm{D}}^{20}-0.57$ ($c 0.96$ in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: $\mathrm{M}^{+}, 216.1520 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ requires $M, 216.1514$); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1655(\mathrm{C}=\mathrm{O}), 1598(\mathrm{Ph})$ and $1579(\mathrm{Ph}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}$, dd, J 2.0 and 8.1, ortho- Ph), $7.6-7.4$ $(3 \mathrm{H}, \mathrm{m}$, remaining Ph$), 2.11(1 \mathrm{H}, \mathrm{t}, J 4.3, \mathrm{Ph}(\mathrm{CO}) \mathrm{CH}), 1.82$ $(1 \mathrm{H}, \mathrm{dqd}, J 3.1,4.3$ and 10.0$), 1.76(1 \mathrm{H}, \mathrm{dtd}, J 4.4,7.1$ and 8.7), 1.6-1.3(6 H, m), $1.22(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{Me})$ and $0.91(3 \mathrm{H}, \mathrm{t}$, $J 7.1, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 200.0^{-}(\mathrm{C}=\mathrm{O}), 138.2^{-}$(ipso$\mathrm{Ph}), 132.4^{+}, 128.4^{+}, 127.8^{+}, 33.5^{+}, 32.4^{+}, 31.7^{-}, 27.1^{-}, 26.0^{+}$,
$22.4^{-}, 14.0^{+}(\mathrm{Me})$ and $12.4^{+}(\mathrm{Me}) ; m / z 216.2\left(15 \%, \mathrm{M}^{+}\right), 105.0$ $(100, \mathrm{PhCO})$ and $77(30, \mathrm{Ph})$.

(1S,2S,3S)-(2-Butyl-3-methylcyclopropyl)phenylmethanone 47

By the same general method, silylated hemiacetal ${ }^{21 b} \mathbf{4 5}$ (112 mg , 0.22 mmol) gave a crude product which was purified by flash chromatography, eluting with $3: 1$ hexane-EtOAc, to give the cyclopropyl ketones 47, 48 and ent- $\mathbf{4 4}$ ($26 \mathrm{mg}, 55 \%, 62: 27: 11$ mixture) as an oil, $R_{\mathrm{f}} 0.58$ ($2: 1$ hexane-ether); $[a]_{\mathrm{D}}^{20}+68.7$ (c 0.60 in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: M^{+}, 216.1520. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ requires $M, 216.1514) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1661(\mathrm{C}=\mathrm{O}), 1598$ (Ph) and $1479(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, major isomer) 7.98 (2 H , dd, $J 1.1$ and 7.2 , ortho- Ph), 7.6-7.4 ($3 \mathrm{H}, \mathrm{m}$, remaining $\mathrm{Ph}), 2.41(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $8.5, \mathrm{Ph}(\mathrm{CO}) \mathrm{CH}), 1.8-1.2(8 \mathrm{H}, \mathrm{m})$, $1.18(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{Me})$ and $0.81(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 199.0^{-}(C=O), 139.2 ${ }^{-}$(ipso-Ph), 132.3^{+}, 128.4^{+}, $127.9^{+}, 35.9^{+}, 32.1^{+}, 31.9^{-}, 25.9^{-}, 23.3^{+}, 22.3^{-}, 18.3^{+}(\mathrm{Me})$ and $14.0^{+}(\mathrm{Me}) ; m / z 216.2\left(15 \%, \mathrm{M}^{+}\right), 105.0(100, \mathrm{PhCO})$ and 77 (30, Ph).
The minor isomer was identical spectroscopically to the cyclopropyl ketone 44. The other isomer was identified by the cyclopropane ring coupling constants: in particular, $2.44[1 \mathrm{H}$, dd, $J 4.9$ and $9.0, \mathrm{Ph}(\mathrm{CO}) \mathrm{CH}]$.

(2R,3R)-(2,3-Dipropylcyclopropyl)phenylmethanone 39

A stock solution of LDA was prepared by the dropwise addition of n-butyllithium $\left(1.2 \mathrm{~cm}^{3}\right.$ of a $1.7 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexanes) to a stirred solution of diisopropylamine ($202 \mathrm{mg}, 2.0$ mmol) in dry THF ($8.6 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. LDA ($5.4 \mathrm{~cm}^{3}$ of a 0.5 mol dm^{-3} solution in THF) was added dropwise to a stirred solution of ($2 S, 3 R$)-1-diphenylphosphinoyl-2-propylhexan-3-yl benzoate $22(603 \mathrm{mg}, 1.34 \mathrm{mmol})$ and chlorotrimethylsilane $\left(0.63 \mathrm{~cm}^{3}\right.$, 5.0 mmol) gave a crude product. By the general method described above, potassium tert-butoxide ($450 \mathrm{mg}, 4.0 \mathrm{mmol}$) gave a crude product, which was purified by flash chromatography, eluting with 5:1 hexane-ether to give the cyclopropyl ketone 39 ($225 \mathrm{mg}, 69 \%$) as an oil, $R_{\mathrm{f}} 0.65$ ($3: 1$ hexane-ether); $[a]_{\mathrm{D}}^{20}-37.6$ ($c 1.89$ in $\mathrm{CHCl}_{3} ; 84 \%$ ee) (Found: M^{+}, 230.1671. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$ requires $\left.M, 230.1671\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1662(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.97(2 \mathrm{H}$, br d, J 7.1, ortho-Ph), 7.51 ($1 \mathrm{H}, \mathrm{tt}, J 1.2$ and 6.4 , para-Ph), 7.41 (2 H, br t, $J 6.5$, meta-Ph), $2.47(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $8.3, \mathrm{Ph}(\mathrm{CO}) \mathrm{C} H), 1.9-1.5(10 \mathrm{H}, \mathrm{m})$, $0.92(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{Me})$ and $0.83(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{Me}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 198.9^{-}(C=O), 139.2^{-}(ipso-Ph), 132.3+, 128.4^{+}, $127.9^{+}(\mathrm{Ph}), 35.6^{-}, 34.4^{+}, 31.7^{+}, 28.8^{+}, 28.5^{-}, 22.9^{-}, 22.6^{-}$, $14.0^{+}(\mathrm{Me})$ and $13.9^{+}(\mathrm{Me}) ; m / z 230.2\left(20 \% \mathrm{M}^{+}\right)$, 187.1 (100 , $\left.\mathrm{M}^{+}-\mathrm{Pr}\right)$ and $105.0(90, \mathrm{PhCO})$.

($1 R, 2 R$)-[2-(tert-Butyldiphenylsilyloxy)methylcyclopropyl]phenylmethanone 36

By the general method described above, ($2 R$)-1-tert-butyl-diphenylsilyloxy-4-diphenylphosphinoyl butan-2-yl benzoate $29(776 \mathrm{mg}, 1.23 \mathrm{mmol})$, LDA ($5.0 \mathrm{~cm}^{3}$ of a 0.5 mol dm^{-3} solution in THF, 2.5 mmol), chlorotrimethylsilane (0.62 $\mathrm{cm}^{3}, 4.9 \mathrm{mmol}$) and potassium tert-butoxide ($413 \mathrm{mg}, 3.70$ mmol) gave a crude product, which was purified by flash chromatography, eluting with $4: 1$ hexane-ether to give the cyclopropyl ketone 36 ($190 \mathrm{mg}, 38 \%$) as an oil, $R_{\mathrm{f}} 0.53$ ($2: 1$ hexane-ether); $[a]_{D}^{20}-8.4$ ($c 1.01$ in $\mathrm{CHCl}_{3} ; 43 \%$ ee) (Found: $\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}$, 357.1311. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ requires $M^{+}-{ }^{t} B u$, 357.1311); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1666(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.02(2 \mathrm{H}, \mathrm{dd}, J 1.0$ and 6.3 , ortho-Bz), $7.7(4 \mathrm{H}, \mathrm{m})$, $7.6-7.35(10 \mathrm{H}, \mathrm{m}), 3.92\left(1 \mathrm{H}\right.$, dd, $J 4.6$ and ${ }^{2} J_{\mathrm{HH}} 10.9$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J 6.1\right.$ and $\left.{ }^{2} J_{\mathrm{HH}} 10.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right)$, $2.68(1 \mathrm{H}, \mathrm{td}, J 4.4$ and $8.0, \mathrm{Ph}(\mathrm{CO}) \mathrm{C} H), 1.86(1 \mathrm{H}, \mathrm{m}), 1.51$ $(1 \mathrm{H}, \mathrm{m}), 1.30(1 \mathrm{H}, \mathrm{m})$ and $1.09\left(9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) 199.7 ${ }^{-}$(C=O), 138.1- (ipso-Ph), 135.6 ${ }^{+}$, 135.5 ${ }^{+}$, 134.8^{-}(ipso-Ph), 134-125 (m), 64.9 ${ }^{-}\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 27.8^{+}, 26.9^{+}$
$\left.{ }^{(} \mathrm{Bu}\right), 23.2^{+}$and 20.7- ${ }^{\left({ }^{(} \mathrm{Bu}\right)}$; $m / z 357.1\left(80 \%, \mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and 199.1 (100, $\left.\mathrm{Ph}_{2} \mathrm{SiOH}\right)$.

(1S,2S)-1-(2-Phenylcyclopropyl)ethanone 34a

LDA ($5.0 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 2.5 mmol) was added dropwise to a stirred solution of (1S)-3-diphenyl-phosphinoyl-1-phenylpropan-1-yl acetate 25a ($473 \mathrm{mg}, 1.25$ mmol) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min , quenched at $-78^{\circ} \mathrm{C}$ with saturated ammonium chloride solution, warmed to room temperature, extracted with dichloromethane $\left(3 \times 15 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude product. By the general method described above, the crude product and potassium tert-butoxide ($380 \mathrm{mg}, 3.4 \mathrm{mmol}$) gave a crude product, which was purified by flash chromatography, eluting with $2: 1$ hexane-ether, to give the cyclopropyl ketone 34a ($126 \mathrm{mg}, 63 \%$) as an oil, $R_{\mathrm{f}} 0.38(2: 1$ hexane-ether) (Found: $\mathrm{M}^{+}, 160.0878 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$ requires M, $160.0888) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1678(\mathrm{C}=\mathrm{O}), 1631(\mathrm{Ph})$ and 1604 $(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.29(2 \mathrm{H}$, br t, $J 7.6$, meta-Ph), 7.21 (1 H, br t, J 7.6, para-Ph), 7.09 (2 H, br d, J 7.2, ortho-Ph), 2.52 $(1 \mathrm{H}$, ddd, $J 4.0,6.8$ and 8.9 , AcCH), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.21$ $(1 \mathrm{H}, \mathrm{td}, J 5.1$ and $10.2, \mathrm{PhCH}), 1.68(1 \mathrm{H}, \mathrm{td}, J 4.6$ and 8.9$)$ and $1.38(1 \mathrm{H}$, ddd, $J 4.3,6.8$ and 7.8$) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 208.1^{-}$ $(\mathrm{C}=\mathrm{O}), 140.3^{-}$(ipso-Ph), $128.8^{+}, 126.5^{+}, 126.0^{+}(\mathrm{Ph}), 32.9^{+}$, $31.2^{+}, 29.1^{+}$and $19.2^{-} ; m / z 160.1\left(30 \%, \mathrm{M}^{+}\right)$and 117.1 (100, $\mathrm{M}-\mathrm{Ac}$).

(1R,2R)-1-[2-(tert-Butyldiphenylsilyloxy)methylcyclopropyl]ethanone 34b

By the same general method, (2R)-1-tert-butyldiphenylsilyloxy-4-diphenylphosphinoylbutan-2-yl acetate 25b ($580 \mathrm{mg}, 1.02$ mmol), LDA ($5.1 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 2.5 mmol) and potassium tert-butoxide ($342 \mathrm{mg}, 3.05 \mathrm{mmol}$) gave a crude product, which was purified by flash chromatography, eluting with 2:1 hexane-ether to give the cyclopropyl ketone 34b ($40 \mathrm{mg}, 11 \%$) as an oil, $R_{\mathrm{f}} 0.24$ (3:1 hexane-ether); $[a]_{\mathrm{D}}^{20}-14.4$ (c 2.08 in $\mathrm{CHCl}_{3} ; 43 \%$ ee) (Found: $\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}$, 295.1158. $\mathrm{C}_{22} \mathrm{H}_{28}{ }^{-}$ $\mathrm{O}_{2} \mathrm{Si}$ requires $M-^{\mathrm{t}} \mathrm{Bu}$, 295.1154); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1691$ $(\mathrm{C}=\mathrm{O})$ and $1589(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.75-7.6(4 \mathrm{H}, \mathrm{m})$, $7.5-7.35(6 \mathrm{H}, \mathrm{m}), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J 4.8\right.$ and ${ }^{2} J_{\mathrm{HH}} 11.0, \mathrm{C} H_{\mathrm{A}^{-}}$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J 6.0\right.$ and $\left.^{2} J_{\mathrm{HH}} 10.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 2.19$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.87(1 \mathrm{H}, \mathrm{td}, J 4.5$ and $8.5, \mathrm{AcCH}), 1.75(1 \mathrm{H}, \mathrm{m})$, $1.20(1 \mathrm{H}, \mathrm{m}), 1.09\left(9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and $0.89(1 \mathrm{H}$, ddd, $J 3.8,6.4$ and 8.2); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 208.1^{-}(\mathrm{C}=\mathrm{O}), 135.6^{+}, 135.2^{-}$(ipso$\mathrm{Ph}), 134.8^{+}, 133.6^{-}$(ipso-Ph), $129.7^{+}, 129.6^{+}, 127.7^{+}(2 \times \mathrm{C})$, $64.6^{-}\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 30.4^{+}, 26.9^{+}\left({ }^{\mathrm{t}} \mathrm{Bu}\right), 26.5^{+}, 26.4^{+}, 19.2^{-}$and $19.0^{-} ; m / z 295.1\left(30 \%, \mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and $119.1\left(\mathrm{Ph}_{2} \mathrm{SiOH}\right)$.

($1 R, 2 R$)-[(2-Hydroxymethyl)cyclopropyl]phenylmethanone 37

Tetra- n-butylammonium fluoride $\left(0.7 \mathrm{~cm}^{3}\right.$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 0.7 mmol) was added dropwise to a stirred solution of the cyclopropyl ketone $36(144 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$. The reaction was stirred for 1 h , water added, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $2: 1$ ether-hexane, to give the alcohol $37(56 \mathrm{mg}, 91 \%)$ as an oil, R_{f} 0.08 ($1: 1$ hexane-ether); $[\alpha]_{\mathrm{D}}^{20}-19.1$ ($c 0.25$ in CHCl_{3}) (Found: M^{+}, 176.0836. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}$ requires $M, 176.0837$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 3448(\mathrm{OH})$ and $1666(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.01(2 \mathrm{H}, \mathrm{td}, J 1.1$ and 6.8 , ortho-Ph), $7.6-7.4(3 \mathrm{H}, \mathrm{m}), 3.80$ $\left(1 \mathrm{H}, \mathrm{dd}, J 5.6\right.$ and $\left.^{2} J_{\mathrm{HH}} 11.4, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.56(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $\left.{ }^{2} J_{\mathrm{HH}} 11.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.66(1 \mathrm{H}$, td, $J 4.2$ and 8.4 , $\mathrm{Ph}(\mathrm{CO}) \mathrm{CH}), 1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.\mathrm{CHCH}_{2} \mathrm{OH}\right), 1.48(1 \mathrm{H}$, $J 3.1$ and 8.6) and $1.07\left(1 \mathrm{H}, \mathrm{ddd}, J 3.6,6.4\right.$ and 8.2); $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.0^{-}(\mathrm{C}=\mathrm{O}), 132.8^{+}, 128.5^{+}, 128.1^{+}$, 64.6^{-} $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 27.6^{+}, 22.7^{+}$and $15.7^{-} ; m / z 176.1\left(10 \%, \mathrm{M}^{+}\right), 105.0$ $(100, \mathrm{PhCO})$ and $77.0(75, \mathrm{Ph})$. Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$

NMR spectrum of the Mosher's esters of this material showed it to have 43% ee.

Attempted epimerisation of cyclopropyl ketone 10b with potassium tert-butoxide in tert-butyl alcohol

Potassium tert-butoxide ($336 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added to a solution of cyclopropyl ketone $\mathbf{1 0 b}(66 \mathrm{mg}, 0.30 \mathrm{mmol})$ in tertbutyl alcohol $\left(4 \mathrm{~cm}^{3}\right)$. After stirring for 6 h at $50^{\circ} \mathrm{C}$, the reaction was quenched with water $\left(4 \mathrm{~cm}^{3}\right)$, extracted with ether $(3 \times 5$ cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. Analysis of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of the crude product indicated that no epimerisation had occurred.

Epimerisation of cyclopropyl ketone 10b with toluene-p-sulfonic acid in chloroform

Toluene- p-sulfonic acid heptahydrate ($150 \mathrm{mg}, 0.51 \mathrm{mmol}$) was added to a solution of cyclopropyl ketone $\mathbf{1 0 b}(114 \mathrm{mg}, 0.51$ mmol) in chloroform ($4 \mathrm{~cm}^{3}$). After stirring for 14 days, the reaction was quenched with water $\left(4 \mathrm{~cm}^{3}\right)$, extracted with ether $\left(3 \times 5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was the cyclopropyl ketones $\mathbf{1 0 b}(112 \mathrm{mg}, 98 \%, 54: 46$ mixture of diastereomers) as an oil, spectroscopically identical to those obtained previously.

References

1 R. M. Williams, G. J. Fegley, R. Gallegos, F. Schaefer and D. L. Pruess, Tetrahedron, 1996, 52, 1149.

2 (a) F. Cluet, A. Haudrechy, P. Le Ber, P. Sinaÿ and A. Wick, Synlett, 1994, 913; (b) R. Csuk and Y. von Scholz, Tetrahedron, 1995, 51, 7193; (c) Z. Zhao, T. Yang, M. Lee, D. Lee, M. G. Newton and C. K. Chu, J. Org. Chem., 1995, 60, 5236; (d) J. Nokami, H. Matsuura, K. Nakasima and S. Shibata, Chem. Lett., 1994, 6, 1071; (e) L. Mévellec and F. Huet, Tetrahedron Lett., 1995, 36, 7441.
3 S. Shuto, S. Ono, Y. Hase, N. Kamiyama and A. Matsuda, Tetrahedron Lett., 1996, 37, 641.
4 (a) A. Hercouet, B. Bessires and M. Le Corre, Tetrahedron: Asymmetry, 1996, 7, 1267; (b) K. Shimamoto, M. Ishida, H. Shinozaki and Y. Ohfune, J. Org. Chem, 1991, 56, 4167; (c) K. Burgess and W. Li, Tetrahedron Lett., 1995, 36, 2725.
5 C. H. Stammer, Tetrahedron, 1990, 46, 2231.
6 E. J. Corey and T. G. Gant, Tetrahedron Lett., 1994, 35, 5373.
7 T. Fakuda and T. Katsuki, Synlett, 1995, 825.
8 (a) K. Ito and T. Katsuki, Synlett, 1993, 638; (b) D. Müller, G. Umbrict, B. Weber and A. Pfaltz, Helv. Chim. Acta, 1991, 74, 232; (c) M. P. Doyle, B. D. Brandes, A. P. Kazala, R. J. Pieters, M. B. Jarstfer, L. M. Watkins and C. T. Eagle, Tetrahedron Lett., 1990, 31, 6613.
9 (a) R. E. Lowenthal and S. Masamune, Tetrahedron Lett., 1991, 32, 7373; (b) S. Kanemasa, S. Hamura, E. Harada and H. Yamamoto, Tetrahedron Lett., 1994, 35, 7985; (c) H. Nishiyama, Y. Itoh, H. Matsumoto, S.-B. Park and K. Itoh, J. Am. Chem. Soc., 1994, 116, 2223; (d) R. E. Lowenthal, A. Abiko and S. Masamune, Tetrahedron Lett., 1990, 31, 6005; (e) D. A. Evans, K. A. Woepel, M. M. Hinman and M. M. Faul, J. Am. Chem. Soc., 1991, 113, 726.

10 (a) S. F. Martin, C. J. Oalman and S. Liras, Tetrahedron Lett., 1992, 33, 6727; (b) M. P. Doyle, R. J. Dieters, S. F. Martin, R. E. Austin, C. J. Oalmann and P. Müller, J. Am. Chem. Soc., 1991, 113, 1423; (c) M. P. Doyle, M. Y. Eismont, M. N. Protopopova and M. M. Y. Kwan, Tetrahedron, 1994, 50, 1665.
11 (a) A. B. Charette and H. Juteau, J. Am. Chem. Soc., 1994, 116, 2651; (b) Y. Ukaji, M. Nishimura and T. Fujisawa, Chem. Lett., 1992, 61.
12 For example, see: A. G. M. Barrett, W. W. Doubleday, K. Kasdorf and G. J. Tustin, J. Org. Chem., 1996, 61, 3280.
13 A. G. M. Barrett and K. Kasdorf, Chem. Commun., 1996, 325.
14 M. Yoshida, M. Ezaki, M. Hashimoto, M. Yamashiti, N. Shigematsu, M. Okuhara, M. Kohsaka and K. Horikoshi, J. Antibiot., 1990, 7, 748.

15 C. R. Johnson and C. W. Schroeck, J. Am. Chem. Soc., 1971, 93, 5303.

16 S. Hanessian, D. Andreotti and A. Gomtsyan, J. Am. Chem. Soc., 1995, 117, 10393.
17 P. Wallace and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1988, 2971.

18 N. A. Portnoy, K. S. Yong and A. H. Aguiar, Tetrahedron Lett., 1971, 2559.
19 (a) L. Horner, H. Hoffmann and V. G. Toscano, Chem. Ber., 1962, 95, 536; (b) R. A. Izydore and R. G. Ghirardelli, J. Org. Chem., 1973, 38, 1790.
20 E. E. Schweizer and W. S. Creasy, J. Org. Chem., 1971, 36, 2379.
21 (a) Preliminary communication: A. Nelson and S. Warren, Tetrahedron Lett., 1996, 37, 1501; (b) N. Feeder, G. Hutton, A. Nelson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1999, preceding paper.
22 (a) H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483; (b) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu and X.-L. Zhang, J. Org. Chem., 1992, 57, 2768.
23 H. C. Kolb and K. B. Sharpless, Tetrahedron, 1992, 48, 10515.
24 A. Nelson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1999, 1963.
25 (a) A. Nelson, P. O'Brien and S. Warren, Tetrahedron Lett., 1995, 36, 2685; (b) A. Nelson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1997, 2645.

26 (a) H. C. Kolb, P. G. Andersson and K. B. Sharpless, J. Am. Chem. Soc., 1994, 116, 1278; (b) P.-O. Norrby, H. C. Kolb and K. B. Sharpless, J. Am. Chem. Soc., 1994, 116, 8470.
27 E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1962, 84, 867.
28 L. Dechoux and E. Doris, Tetrahedron Lett., 1994, 35, 2017.
29 N. J. Barnes, A. H. Davidson, L. R. Hughes, G. Procter and V. Rajcoomar, Tetrahedron Lett., 1981, 22, 1751.

30 (a) J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543; (b) Y. Goldberg and H. Alper, J. Org. Chem., 1992, 57, 3731; (c) D. E. Ward and C. K. Rhee, Tetrahedron Lett., 1991, 32, 7165.

31 K. Mislow and J. Siegel, J. Am. Chem. Soc., 1984, 106, 3319.
32 F. X. Wilson, G. W. J. Fleet, K. Vogt, Y. Wang, D. R. Witty, S. Choi, R. Storer, P. L. Meyers and C. J. Wallis, Tetrahedron Lett., 1990, 31, 6931.

33 Veibel, Biochem. Z., 1931, 239, 457.
34 A. M. d'A. R. Gonsalves, R. A. W. Johnstone, M. M. Pereira and J. Shaw, J. Chem. Soc., Perkin Trans. 1, 1991, 645.

Paper 9/07321C

